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Abstract-The deterministic Shanley-Ryder interaction failure criterion is reformulated in terms
of generalized stress tensors and cast into two distinct invariant forms, one for applied stresses and
the other for failure stresses. This generalization extends its use to deterministic and stochastic
problems with large deformations as well as to any arbitrary anisotropic material. Additionally, the
original N-dimensional failure surfaces corresponding to N combined loads are reduced to a
universal three-dimensional failure surface in terms of three loading, geometric and material par­
ameters. Although a greater number of such parameters could be used, the accuracy of fit to data
based on only three parameters negates such a need. Illustrative examples are presented and the
influence of parametric variations is discussed.

INTRODUCTION

In 1937, Shanley and Ryder proposed the so-called interaction curve stress ratio failure
criterion for combined deterministic loads. It essentially relates empirically each specific
load to its corresponding uniaxial failure stress and contains sets of parameters which are
functions of the types and numbers of combined loads and of material properties as well
as geometries. This criterion has withstood the test of time and is the standard failure
criterion in the aerospace industry. A wealth of information on parameters in relation to
materials, loadings and geometries can be found in the MIL Handbook (1991).

Since its original introduction, this criterion has undergone extensions and modi­
fications to account for time-dependent and/or stochastic failures. Hilton (1952) used this
principle to determine critical times for the creep buckling ofviscoelastic columns. Yi (1991)
extended the deterministic quadratic delamination criterion of Brewer and Lagace (1988)
(a form of interaction curves) to cover time-dependent viscoelastic delamination onsets.
Hilton (1992) reformulated the deterministic interaction curves to take into account stoch­
astic loads and material properties such as moduli and failure stresses. Finally, Hilton and
Yi (1993) generalized the Yi (1991) delamination criterion to cover three-dimensional
random loads, geometries and material properties and thus permit probabilistic delami­
nation onset determinations as functions of time to failure.

Cederbaum et al. (1989) examined the reliability of laminated plates subjected to
random static loads using the Shanley-Ryder interaction curves for two-dimensional ten­
sion and compression and unidirectional shear. The inherent difficulties associated with
anisotropic behavior are quite apparent as the authors are forced to use four distinct
interaction curves for tension and compression of the fibers and of the matrices. Hasofer
and Lind (1974) formulated a different invariant second moment failure criterion based on
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only three separate stress components. Tsai and Wu (1971) devised a failure criterion in
terms of multiple specialized stress invariants which do not lend themselves to a three­
dimensional visualization and which need to be reformulated for each combined load set.
Previously, Gol'denblat and Kopnov (1966) proposed a failure relationship based on
invariant combinations of applied and failure stresses, rather than on separate invariants
based on each of the two types of stresses as is done in the present study.

However, while only deterministic, none of the above failure analyses consider large
deformations nor general material anisotropy, since all are formulated in terms of stresses
along undeformed Cartesian axes. In order to remove the small deformation restrictions,
one needs to introduce generalized coordinates moving with the deforming body and/or
structural components. Anisotropy can best be supported by expressions in terms of stress
invariants which are insensitive, except for magnitudes, to the distortions of the body and
to its intrinsic (embedded) coordinate shape changes. This invariant large deformation
formulation results in a universal three-dimensional deterministic or stochastic failure
surface criterion with three or more parameters which are functions of (1) the type and
number of loadings, (2) material properties and (3) structural geometry. In this form it can
readily be applied in a general fashion to large flexible space structures and to composites
where fiber orientations directly influence material anisotropy and where deflections may
also be sizeable. On the other hand, the Shanley-Ryder criterion must be re-evaluated for
each set of material coordinate directions used in specific anisotropic analyses of each
structural member.

ANALYSIS

Consider a body or a part of a structure in a generalized nonorthogonal curvilinear
coordinate system (Ji (i = 1, 2, 3) subjected to N number of extemalloads, such as bending,
tension, compression, torsion, shear, etc., based on applied stresses (In corresponding to
each loading and on their associated uniaxial failure stresses Fn in the form of (Shanley and
Ryder, 1937)

N ((I )onL -!'. -1
n= I Fn

(1)

and where the experimentally determined exponents an depend on each loading as well as
on their combinations, on material properties and on geometry ofeach structural compon­
ent. The failure condition of eqn (1) has since been extended to combined stochastic loads
and failure stresses by Hilton (1992), and to time-dependent deterministic and stochastic
viscoelastic composite delaminations by Yi (1991) and by Hilton and Yi (1993), respectively.
Condition (1) as well as the three cited publications all use essentially Cartesian stress
components referred to each particular type of loading, thus making them unsuitable for
large deformations and awkward, to say the least, for more complicated anisotropic states.

A generalization of these failure criteria is, therefore, proposed in terms of curvilinear
Cauchy stress tensors rj and Fj for each type of loading [see Green and Zerna (1954) for
the generalized tensor notation]. The three fundamental invariants of the second order
tensors r} and F5 can be written as

and similarly

J2 = r5't{
.. k

J 3 = rjr{ri (2)



Invariant anisotropic large deformation

,11= F:
,12 = FjF{

. . k
,13 = FjFtF;,
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(3)

where the usual one third has been omitted since only ratios Jk/,1k are being used and each
rJ and FJ is replaced by its absolute value [see comments after eqn (5)]. The generalized
tensor summation convention applies in all relations. The Cayley-Hamilton theorem states
that there are only three fundamental independent invariants associated with any second
order tensor (Brand, 1947). Consequently, any three invariants, such as those of eqns (2)
and (3), are sufficient to formulate an invariant failure condition. However, it must be noted
that the odd numbered invariants vanish whenever only shear stresses are present in the
system, i.e. rJ = 0 for i = j. Since a multiplicative invariant failure law is proposed in this
paper, should this become a drawback then only even numbered invariants Jk and ,1k
should be used. On the other hand, in the illustrative example displayed in the discussion
section, only the first three invariants are used without any impingement on the accuracy
of the solution.

An invariant failure criterion can then be formed in terms ofthese invariants paralleling
the Shanley-Ryder construction such that for deterministic conditions (stochastic ones will
be considered subsequently)

(4)

The one third in eqn (4) is introduced since, unlike the criterion (1), the invariant condition
(4) always has three terms even for uniaxial loadings when, say, r1 is the only nonzero stress
[see eqns (2) and (3) and subsequent analysis and discussion when r1 = 0].

Since the failure condition (4) must always be reducible to one-dimensional uniaxial
failure cases where r1 = Fl, care must be exercised to properly form the failure stress
invariants ,Ito which can only contain the FJ corresponding to the existing stress states rj.
For instance, a combination of normal and shear stresses r land ri has corresponding ,IkS

for symmetric Fj = F{:

,11 =Fl

,12 = (Fl)2 +2(FD2

,13 = (Fl)3+2(FWF1. (5)

An additional important comment relating to the signs of the invariants Jk and ,1k
needs to be entered. In eqn (1), each (Tn has the same algebraic sign as its corresponding
failure stress Fn since each pair refers to the same uniaxial condition. However, such is not
the case with the three invariants Jk and ,Ik since any of them can be either positive, negative
or zero without regard to its corresponding pair. Consequently, in order to avoid the pitfalls
of Jk or ,Ik ::::; 0 resulting in possible zero denominators or negative Jk/,1k ratios raised to
non-integer powers or Jk /,1k exceeding unity, all rJ and FJ components in eqns (2) and (3)
are replaced by their absolute values. From a physical point ofview, this makes sense since
in the above example, for instance, the value of ,II or ,13 should have the identical influence
on failure without regard to the signs of F1 and/or Fi. That is to say, ,It or ,13 should not
be diminished when F1 is compressive as compared to a tensile failure stress FI (except for
possible differences in numerical values for these two distinct normal failure stresses).
Similarly, a negative Fi should not decrease ,13'

In other loading conditions where unequal tensile and compressive stresses are present
on different parts of the same surface in the same direction, as would be due to unsym­
metrical bending, or where ultimate stresses in compression and tension differ, invariants
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for both conditions must be evaluated separately to see which condition is the predominant
one and more likely to first result in failure.

It should be noted that the Shanley-Ryder relationship (1) is representable in a N­
dimensional space depending on the number N of distinct combined loads, thus making it
non-unique and creating pictorial representations which are most difficult, if not impossible.
On the other hand, the present failure condition (4), in addition to being invariant, is always
representable in a three-dimensional space Jk / f k regardless of how many combined loads
N are present in the system. The three-dimensional failure surface given by eqn (4) is
universal and its specific shape is only governed by the exponents bk> which depend on types
and number of loadings, material properties and on structural geometry.

The invariant failure condition (4) is written as a matter of convenience in a form
similar to the original Shanley-Ryder condition (I). Since both equations represent ana­
lytical failure surfaces of variables (Jn/Fnand Jk/ f k each in some finite domain, they can be
expressed functionally in power series. In particular, the general, but also more cumbersome,
expression for condition (4) is

(6)

with K = L = M = 00. From a practical standpoint, one would truncate the three series
with some finite, but not necessarily equal, values for K, Land M. Equation (6), no matter
what the values of K, L or M, is still representable by a three-dimensional surface.

Similarly, the Shanley-Ryder condition can be generalized to

(7)

with N representing the number of loading conditions as before in eqn (1) and yielding an
N-dimensional failure surface.

In essence then, eqns (I), (4) and (7) represent approximations to the corresponding
infinite or truncated series in terms of a limited set of generally non-integer exponents an
and bk • Parenthetically, it is worth noting that such expressions as the octahedral shear
stress law and the Huber-von Mises-Hencky plasticity condition (Freudenthal, 1950) are
among some of the degenerate examples of the general invariant form (6).

From a computational point of view, eqns (1) and (4) are of most awkward forms
when determining the exponents an or bk by the least squares method. A much more
computationally attractive expression is

(8)

which, when taking logarithms, results in linear relations for the three unknown bk

exponents, thus making their determination from experimental data very simple. These
procedures and results will be covered in the next section.

This invariant deterministic failure criterion in the form (4), (6) or (8) can be readily
extended to stochastic loads, material properties and failure stresses following the non­
invariant random formulation of Hilton (1992). Consider random stresses IfJ with mean
values -rJ resulting from stochastic combined applied loads, material properties (moduli),
temperatures, moisture contents, geometries, etc. Invariants ~(lfj) and Jk( -rJ) correspond to
these stresses. Similarly, consider random failure stresses FJ with mean values FJ resulting
in invariants Jk(FJ) and f k(Fj). Two separate stochastic combined load failure criteria can
now be constructed, such that
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(9)

(10)

where the function F1NV (J/J) has an analogous construction to that of F1NV (JiJ) given
by eqns (4), (6) and/or (8). Failure will occur whenever

11= V-iJ~ O. (11)

The random variables iJ and Veach may have distinct probability density distributions
4J(if) and cI>(V) with appropriate moments depending on the distributions of Jkand Jk' In
fact, as formulated previously by Hilton (1992), the exponents bk in eqns (9) and (10) are
taken as deterministic and all the stochastic properties of the rJ and PJ stresses are totally
absorbed in, and prescribed by, the 4J(if) and cI>(V) distributions. Similarly, from eqn (11),
the variable 11 has a probability density distribution l/f(i1) derived from a convolution integral
of the two distributions 4J and cI> (Lin, 1967). The probability offailure P(u) ofa structural
component under N combined load is

P(u) = rl/f(z)dz,

with

U = u/u and z = (l1-u)/u

and where u2 is the standard deviation of z and u is the mean of 11 (Hilton, 1992).

(12)

(13)

DISCUSSION OF RESULTS

The three exponents bk in eqns (4), (6) and (8) or the many coefficients Ck /m in eqn (6)
can be generated from either (i) experimental data or (ii) a least square fit of eqn (4) or (8)
to the Shanley-Ryder curves of eqn (1).

As a means of illustrating procedure (ii), consider the following deterministic example
with normalized stress values for N = 4 :

F l = 1.0 tension in Xl direction

F2 = 1.1 bending tension or compression in XI direction

F3 = 0.9 tension in X2 direction

F4 = 0.8 shear on Xl plane in X2 direction

al = 1.2 a2 = 1.5 a3 = 2.0 a4 = 2.5

which specifies eqn (1) to be

(14)

The parametric values used here are selected to represent a typical illustrative example and
do not necessarily correspond to any specific material. By using the least squares method
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after first taking the logarithms of eqn (8), the bk exponents of eqns (8), (9) and (10) can be
determined in the following manner. Form a least squares relation between eqn (1), i.e.
(14), and eqn (8) such that the sum of errors for a set of P points is

and which will be minimum when each

(15)

(r=I,2,3) (16)

is satisfied or

f {t [bklOg(~k)+C*JIOg(~k)}=O (r= 1,2,3)
p=1 k=1 ~pk ~pk

(17)

and where C* = log C.
The set of P points satisfying eqn (1), or specifically in this example of eqn (14), is

generated and then used in eqn (17) to solve for the exponents bk • The invariants are
determined from eqns (2) and (3) with r; and F; corresponding to the absolute values of the
set of P points used in eqn (l).

Ideally, the coefficient C in eqn (8) should be unity, however this would then make
C* = O. Under the latter condition eqn (17) then becomes three homogeneous linear
algebraic relations for the bk exponents leading to eigenvalues where physically and math­
ematically none exist and thereby casting doubt on the validity of eqn (8) for C = I as an
appropriate approximation for the most general expression (8). However, in the approxi­
mation (8) a value of C other than unity, i.e. I ± e, may be selected such that the cor­
responding bks give the "best fit" to the data, thus removing any conditions leading to
spurious eigenvalues.

Table I displays the results of computations to determine a reasonable value of C in
eqn (8) to fit the example of eqn (14). It can be readily seen that, in the C range of
I.O± I.E-9 to I.O± I.E-II, extremely good agreement results between the Shanley­
Ryder form (14) and the invariant condition (8).

The accuracy of the fit, as indicated by Table 1, for an arbitrary but realistic Shanley­
Ryder interaction curve example of eqn (14), shows that the three parameters of the
invariant failure surface (8) are sufficient to adequately characterize failure conditions.
However, if desired or necessary, the fuller complement of K+L+ M parameters Ck1m of
eqn (6) is always available for a least square fit of any data set.

Table 1. Relation of C in eqn (8) to accuracy of eqn (15) fit for
first three invariants

C

l.0± l.E-l
l.O±1.E-3
1.0±1.E-5
l.0±l.E-7
l.0± l.E-9
l.0± l.E-1l

Maximum fit error

0.3722E-l
O.3471E-3
O.3469E-5
O.3469E-7
0.3469E-9
O.3469E-II

0.2025E-3
O.l821E-7
0.1819E-ll
O.l819E-15
O.1819E-19
O.l818E-23
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Fig. L Shanley-Ryder failure condition surface ofeqn (15) for 11'4 = 0.4.
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Figures 1,2 and 3 show the related deterministic four-dimensional and invariant three­
dimensional failure surfaces for this example. The Shanley-Ryder eqn (14) is depicted in
Figs 1 and 2 for 0'4 values of 0.4 and 0.6, while Fig. 3 represents the corresponding
invariant condition (8) and is the single invariant failure surface for 440,000 combinations
of admissible values of the four O'n satisfying eqn (14). Other plots similar to Figs 1 and 2
can, of course, also be generated each for a distinct single 0'4 value.

In order to remove the possible undesirable effects of odd numbered invariants J( and
J3 when the normal stresses vanish, the expressions in eqn (8) were modified to contain the
first three even numbered invariants Jk and ,!k. This means that in eqns (8), (15), (16) and
(17) the k subscripts 1,2 and 3 are changed to 2, 4 and 6, respectively. The added invariants
are

(18)

with similar expressions for /4 and /6 in terms of Fj, etc. The invariants J2 and /2 were
previously defined in eqns (2) and (3). The evaluation offitting a modified eqn (8), containing
these even numbered invariants, to the Shanley-Ryder expression (14) are given in Table

0.1

i---""""--.;----.;:-=-0.e~-':0:.e---.;:~--'\1.2
0.2

Fig. 2. Shanley-Ryder failure condition surface ofeqn (15) for 11'4 = 0.6.



3292

J3

H. H. Hilton and S. T. Ariaratnam

1.5

Fig. 3. Invariant failure surface ofeqn (8) based on first three invariants.

Table 2. Relation of C in eqn (8) to accuracy of eqn (15) fit for
even numbered invariants

C

1.0± I.E-l
1.0± I.E-3
1.0± I.E-5
1.0±1.E-7
1.0±1.E-9
1.0± I.E-II

Maximum fit error

0.2780E-l
0.2605E-3
0.2603E-5
0.2603E-7
0.2603E-9
0.2603-11

0.8999E-4
0.8083E-8
0.8075E-12
0.8075E-16
0.8075E-20
0.8073E-24

2. It should be noted that this considerably more nonlinear invariant failure condition,
0(r;)6) approximates eqn (14) with the same degree of accuracy as does the original eqn
(8) which is based only on the first three invariants, 0((r;)3). A plot of the failure condition
with even numbered invariants corresponding to the stresses of eqn (14) is shown in Fig. 4.
No discernible pattern emerges between the invariant failure surfaces of Figs 3 and 4.

As noted before, the Shanley-Ryder condition cannot be reduced to a single plot for
a given set of loading conditions, material properties, etc. For instance, for N combined

2

Fig. 4. Invariant failure surface of eqn (8) based on even numbered invariants.
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loadings, N - 3 stresses (Tn need to be parametrically varied to produce multiple three­
dimensional plots of the type shown in Figs 1 and 2. On the other hand, a single three­
dimensional invariant plot of eqn (8) or its simpler forms depicts all multiple conditions of
the above parameters.

The additive invariant failure condition of eqn (4), with either sequentially or odd
numbered invariants, could be similarly fitted to eqn (1) using the techniques described by
Worthing and Geffner (1943) to solve the nonlinear least squares relations for the exponents
bk in eqn (4). However, the procedure outlined above for the multiplicative failure condition
(8) is so much simpler since only linear relations of the type (17) need to be solved for the
unknown exponents bk • Since the accuracy of fit, as shown in Tables I and 2, is extremely
high, the multiplicative failure surface (8) is extremely satisfactory in characterizing failure
under combined deterministic or random loads.

CONCLUSIONS

The two distinct universal invariant failure criteria based on each of three applied and
failure stress invariants and three parameters dependent on material properties, geometry
and on loading conditions is accurate and representable by a single failure surface regardless
of the degree of anisotropy. The three parameters in the multiplicative representation of
the failure surface function are relatively easily determined from a set of linear algebraic
least square relations. The accuracy of data fit based on expressions with the first three
invariants and on those with the first three even numbered invariants is about the same.
However, the even invariants, although of considerably higher degree of nonlinearity, do
not suffer from possible shortcomings when, under conditions of zero normal stresses, the
odd invariants vanish.
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